An Improvement of the Elliptic Net Algorithm

Binglong Chen and Chang-An Zhao

Department of Mathematics Sun Yat-sen University

Outline

- Background
 - Usage of Elliptic Nets
 - Previous Work
- Our Results
 - Main Results
 - Efficiency analysis and implementations

Outline

- Background
 - Usage of Elliptic Nets
 - Previous Work
- Our Results
 - Main Results
 - Efficiency analysis and implementations

- Point counting or scalar multiplication (as elliptic nets of rank one are elliptic divisibility sequences or division polynomials)
- Solve ECDLP in special cases
- Computation of bilinear pairings (using elliptic net of rank two)

- Point counting or scalar multiplication (as elliptic nets of rank one are elliptic divisibility sequences or division polynomials)
- Solve ECDLP in special cases
- Computation of bilinear pairings (using elliptic net of rank two)

- Point counting or scalar multiplication (as elliptic nets of rank one are elliptic divisibility sequences or division polynomials)
- Solve ECDLP in special cases
- Computation of bilinear pairings (using elliptic net of rank two)

- Point counting or scalar multiplication (as elliptic nets of rank one are elliptic divisibility sequences or division polynomials)
- Solve ECDLP in special cases
- Computation of bilinear pairings (using elliptic net of rank two)

Outline

- Background
 - Usage of Elliptic Nets
 - Previous Work
- Our Results
 - Main Results
 - Efficiency analysis and implementations

Previous Work

- Stange proposed the elliptic net algorithm to compute the Tate-Lichtenbaum Pairing (2007)
- Naoki et al.(2011) and Tang et al.(2014) compute the Ate-like pairings via the elliptic net algorithm
- Uchida et al. (2013) and Tran(2014) generalize the concept of elliptic nets to hyperelliptic case

Previous Work

- Stange proposed the elliptic net algorithm to compute the Tate-Lichtenbaum Pairing (2007)
- Naoki et al.(2011) and Tang et al.(2014) compute the Ate-like pairings via the elliptic net algorithm
- Uchida et al. (2013) and Tran(2014) generalize the concept of elliptic nets to hyperelliptic case

Previous Work

- Stange proposed the elliptic net algorithm to compute the Tate-Lichtenbaum Pairing (2007)
- Naoki et al.(2011) and Tang et al.(2014) compute the Ate-like pairings via the elliptic net algorithm
- Uchida et al. (2013) and Tran(2014) generalize the concept of elliptic nets to hyperelliptic case

Definition of an elliptic net

Definition

```
R - integral domain
```

G - finite-rank free abelian group

An elliptic net $W: G \rightarrow R$ satisfies the recurrence relation

$$W(p+q+s)W(p-q)W(r+s)W(r)$$

$$+W(q+r+s)W(q-r)W(p+s)W(p)$$

$$+W(r+p+s)W(r-p)W(q+s)W(q) = 0$$

for all $p, q, r, s \in G$.

Recurrence relation from matrices

Term	m_1	m_2	<i>m</i> ₃	<i>m</i> ₄
	$r+\frac{s}{2}$	$q+\frac{s}{2}$	$p+\frac{s}{2}$	<u>s</u>

Let A be a 4×4 anti-symmetric matrix defined by

$$A = (W(m_{\rho} + m_{\lambda})(W(m_{\rho} - m_{\lambda}))_{1 \leq \rho, \lambda \leq 4}$$

$$A = \begin{pmatrix} 0 & W(r+q+s)W(r-q) & W(r+p+s)W(r-p) & W(r+s)W(s) \\ 0 & W(q+p+s)W(q-p) & W(q+s)W(q) \\ 0 & 0 & W(p+s)W(p) \\ 0 & 0 \end{pmatrix}$$

Recurrence relation from matrices

Recurrence relation derived from

$$Pf(A) = 0$$

That is,

$$W(r+q+s)W(r-q)W(p+s)W(p) \ -W(r+p+s)W(r-p)W(q+s)W(q) \ +W(q+p+s)W(q-p)W(r+s)W(s) = 0$$

Construction of an elliptic net from elliptic curves

Theorem

(Stange 2007) E - elliptic curve over a field K For all $v \in \mathbb{Z}^n$, there exist functions ψ_v

$$\psi_{v}: E^{n} \to K$$

such that

1. Each ψ_v is doubly periodic(or elliptic) in each variable 2. For any fixed $P \in E^n$, the function $W : \mathbb{Z}^n \to K$ defined by $W(v) = \psi_v(P)$ is an elliptic net.

Pairing computation via elliptic nets

$\mathsf{Theorem}$

E - an elliptic net over a finite field K

m - a positive integer

 $P \in E(K)[m] Q \in E(K)$

Tate-Lichtenbaum pairing defined by elliptic nets of rank 2

$$e(P,Q) = \frac{W(m+1,1)W(1,0)}{W(m+1,0)W(1,1)}$$

where $W(m,n) = \psi_{m,n}(P,Q)$.

key step in pair computation: compute W(n, i), i = 1 or 0 recursively.

Iteration step of the elliptic net algorithm

Double step:

DoubleAdd step:

In each loop, 11 variables should be updated always.

Iteration formula for W(n,0) and W(n,1)

Term	m_1	m_2	<i>m</i> ₃	<i>m</i> ₄	n_1	n_2	<i>n</i> ₃	n ₄
W(2i,0)	i+1	i-1	1	0	0	0	0	0
W(2i-1,0)	i	i-1	1	0	0	0	0	0
W(2i+j,1)	i	i+j	1	0	1	0	0	0

where j = -1, 0, 1, 2.

Let A be a 4×4 anti-symmetric matrix defined by

$$A = (W(m_{\rho} + m_{\lambda}, n_{\rho} + n_{\lambda})(W(m_{\rho} - m_{\lambda}, n_{\rho} - n_{\lambda}))_{1 \leq \rho, \lambda \leq 4}$$

Iteration formula derived from

$$Pf(A) = 0$$

Iteration formula for W(2i,0)

$$\begin{pmatrix} 0 & (2i,0)(2,0) & (i+2,0)(i,0) & (i+1,0)^{2} \\ 0 & (i,0)(i-2,0) & (i-1,0)^{2} \\ 0 & (1,0)^{2} \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i,0)W(2,0)W(1,0)^{2}$$

$$-W(i+2,0)W(i,0)W(i-1,0)^{2}$$

$$+W(i+1,0)^{2}W(i,0)W(i-2,0)=0$$

Iteration formula for W(2i-1,0)

$$\begin{pmatrix} 0 & (2i-1,0)(1,0) & (i+1,0)(i-1,0) & (i,0)^{2} \\ 0 & (i,0)(i-2,0) & (i-1,0)^{2} \\ 0 & (1,0)^{2} \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i-1,0)W(1,0)^{3}$$

$$-W(i+1,0)W(i-1,0)^{3}$$

$$+W(i,0)^{3}W(i-2,0)=0$$

Iteration formula for W(2i-1,1)

$$\begin{pmatrix} 0 & (2i-1,1)(1,1) & (i+1,1)(i-1,1) & (i,1)^2 \\ 0 & (i,0)(i-2,0) & (i-1,0)^2 \\ 0 & (1,0)^2 \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i-1,1)W(1,1)W(1,0)^{2}$$

$$-W(i+1,1)W(i-1,1)W(i-1,0)^{2}$$

$$+W(i,1)^{2}W(i,0)W(i-2,0)=0$$

Iteration formula for W(2i,1)

$$\begin{pmatrix} 0 & (2i,1)(0,1) & (i+1,1)(i-1,1) & (i,1)^2 \\ 0 & (i+1,0)(i-1,0) & (i,0)^2 \\ 0 & (1,0)^2 \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i,1)W(0,1)W(1,0)^{2}$$

$$-W(i+1,1)W(i-1,1)W(i,0)^{2}$$

$$+W(i,1)^{2}W(i+1,0)W(i-1,0) = 0$$

Iteration formula for W(2i+1,1)

$$\begin{pmatrix} 0 & (2i+1,1)(-1,1) & (i+1,1)(i-1,1) & (i,1)^2 \\ 0 & (i+2,0)(i,0) & (i+1,0)^2 \\ 0 & 0 & (1,0)^2 \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i+1,1)W(-1,1)W(1,0)^{2}$$

$$-W(i+1,1)W(i-1,1)W(i+1,0)^{2}$$

$$+W(i,1)^{2}W(i+2,0)W(i,0) = 0$$

Iteration formula for W(2i+2,1)

$$\begin{pmatrix} 0 & (2i+2,1)(-2,1) & (i+1,1)(i-1,1) & (i,1)^2 \\ 0 & (i+3,0)(i+1,0) & (i+2,0)^2 \\ 0 & 0 & (1,0)^2 \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i+2,1)W(-2,1)W(1,0)^{2}$$

$$-W(i+2,0)^{2}W(i+1,1)W(i-1,1)$$

$$+W(i+3,0)W(i+1,0)W(i,1)^{2}=0$$

Outline

- Background
 - Usage of Elliptic Nets
 - Previous Work
- 2 Our Results
 - Main Results
 - Efficiency analysis and implementations

Improved elliptic net algorithms

- **1** Update iteration loops using **10** intermediate variables
- Convert elliptic net algorithms in a non-adjacent form
- Make W(2,0)=1 by using the equivalence of elliptic nets and choosing special base fields.

New Double steps

Fact

W(i+4,0) is not necessary for updating process of the double steps. This will save some costs.

New DoubleAdd steps

How to obtain W(2i+4,0)

Term	m_1	m_2	<i>m</i> ₃	m_4	n_1	n_2	<i>n</i> ₃	n ₄
2i+4	2i+2	2	1	0	0	0	0	0

$$\begin{pmatrix}
0 & (2i+4,0)(2i,0) & (2i+3,0)(2i+1,0) & (2i+2,0)^{2} \\
0 & (3,0)(1,0) & (2,0)^{2} \\
0 & (1,0)^{2} \\
0 & 0
\end{pmatrix} = 0$$

$$W(2i+4,0)W(2i,0)W(1,0)^{2}$$

$$-W(2i+3,0)W(2i+1,0)W(2,0)^{2}$$

$$+W(2i+2,0)^{2}W(2i+3,0)W(2i+1,0) = 0$$

- All terms appeared in the formula of W(2i+4,0) have been computed.
- The cost for W(2i+4,0) will be 1I + 3M.

DoubleSubtraction steps

How to obtain W(2i-4,0)

Term	m_1	m_2	<i>m</i> ₃	m_4	n_1	n_2	<i>n</i> ₃	n ₄
(2i-4,0)	2i-2	2	1	0	0	0	0	0

$$\begin{pmatrix} 0 & (2i,0)(2i-4,0) & (2i-3,0)(2i-1,0) & (2i-2,0)^{2} \\ 0 & (3,0)(1,0) & (2,0)^{2} \\ 0 & (1,0)^{2} \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i-4,0)W(2i,0)W(1,0)^{2}$$

$$-W(2i-3,0)W(2i-1,0)W(2,0)^{2}$$

$$+W(2i-2,0)^{2}W(3,0)W(1,0) = 0$$

How to obtain W(2i-2,1)

Term	m_1	m_2	<i>m</i> ₃	<i>m</i> ₄	n_1	<i>n</i> ₂	<i>n</i> ₃	n ₄
(2i-2,1)	i	i-2	1	0	1	0	0	0

$$\begin{pmatrix} 0 & (2i-2,1)(2,1) & (i+1,1)(i-1,1) & (i,1)^{2} \\ 0 & (i-1,0)(i-3,0) & (i-2,0)^{2} \\ 0 & (1,0)^{2} \\ 0 & 0 \end{pmatrix} = 0$$

$$W(2i-2,1)W(2,1)W(1,0)^{2}$$

$$-W(i+1,1)W(i-1,1)W(i-2,0)^{2}$$

$$+W(i-1,0)W(i-3,0)W(i,1)^{2} = 0$$

Outline

- Background
 - Usage of Elliptic Nets
 - Previous Work
- 2 Our Results
 - Main Results
 - Efficiency analysis and implementations

Efficiency analysis

Table: Cost of the Double(V) algorithm for the different methods

Method	Operation Count
Elliptic Net algorithm(Stange2007)	
This work	$5S + (22 + 6i)M + S_i + \frac{3}{2}M_i$

Efficiency analysis

Table: Cost of the DoubleAdd/Sub(V) algorithm for the different cases

Method	Operation count
Elliptic Net algorithm(Stange2007)	$6S + (26+6i)M + S_i + 2M_i$
This work	$5S + (23 + 6i)M + I + S_i + 2M_i$

Efficiency analysis

Table: Maximal value of the density ho for the proposed method

Density	I = 10M	I = 20M	I = 30M
ρ	0.44	0.23	0.15

 ρ - density of non-zero digits of the integer m in NAF representation.

Implementation results

Curve parameters

- $r = 2^{255} + 2^{41} + 1$
- $p = 12 \cdot (2^{1280} + 2^{31} + 2^{15}) \cdot r 1;$
- $F_{p^2} = F_p[i]/(i^2+1)$
- $E: y^2 = x^3 3x$ over F_p

Running environment specification: Ubuntu Kylin 14.04 64bits, Core i5-4670 CPU $3.40 \text{GHz} \times 4$, and memory, 8GB, Magma language.

Implementation Timing

Table: Cost of computing $f_{r,P}(Q)$ by the different methods-128 security level

Method	Operation Count	Time(ms)
Stange's algorithm	11554.5 <i>M</i>	37.8
This work	10352.5 <i>M</i>	33.2
Miller's algorithm	4164 <i>M</i>	14.9

Summary

- Elliptic net algorithms have been improved when the loop parameter *r* has low Hamming weight.
- Miller's algorithm is still a valid candidate for practical pairing-based implementations
- More developments of the Elliptic Net algorithm should be required in future.

Thank you for your attention!

More details can be found in http://eprint.iacr.org/2015/276

