The LWE Challenge

19th Workshop on Elliptic Curve Cryptography

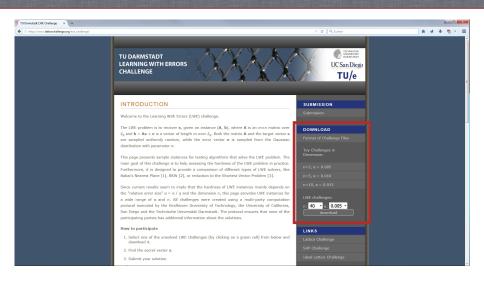
Rump Session

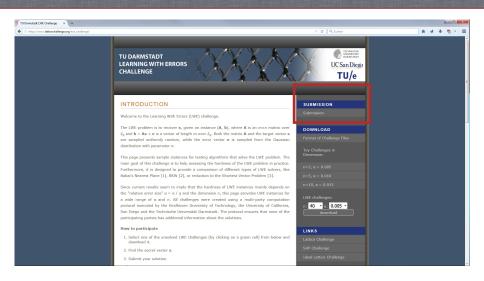
September 28, 2015

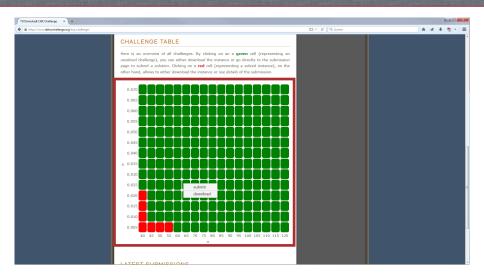
The LWE Problem

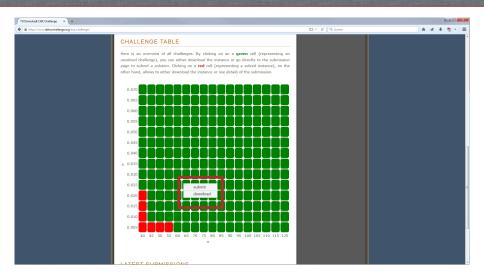
- $n, m, q \in \mathbb{N}$
- uniformly random matrix $\mathbf{A} \in \mathbb{Z}_{\mathbf{q}}^{\mathbf{m} \times \mathbf{n}}$
- \bullet uniformly random vector $s \in \mathbb{Z}_q^n$
- error vector $\mathbf{e} \leftarrow \chi^{\mathbf{m}}$
- ullet discrete Gaussian distribution χ on \mathbb{Z}_q

$$b = As + e \in \mathbb{Z}_q^m$$


The LWE problem is to recover **s**, given **A** and **b**.


The LWE Problem


- $n, m, q \in \mathbb{N}$
- uniformly random matrix $\mathbf{A} \in \mathbb{Z}_{\mathbf{q}}^{\mathbf{m} \times \mathbf{n}}$
- ullet uniformly random vector $\mathbf{s} \in \mathbb{Z}_{\mathbf{q}}^{\mathbf{n}}$
- error vector $\mathbf{e} \leftarrow \chi^{\mathbf{m}}$
- ullet discrete Gaussian distribution χ on \mathbb{Z}_q


$$b = As + e \in \mathbb{Z}_q^m$$

The LWE problem is to recover \mathbf{s} , given \mathbf{A} and \mathbf{b} .

 $lwe_challenge@cdc.tu-darmstadt.de\\$